

### **STATE PLAYOFFS - 2006**

| Arithmetic and Number Theory |   |  |
|------------------------------|---|--|
| -                            | 1 |  |
|                              | 2 |  |
|                              | 3 |  |

1. What is the closest multiple of 7 to the median of all 2-digit prime numbers?

2. For  $n \ge 20$ , determine the least integer value of n such that the product (505)n has twice as many digits as n.

3. Find the largest prime factor of  $320^2 - 320 + 4$ .

Round 1

### **STATE PLAYOFFS – 2006**



1. Factor completely:  $3x^a(x^a - 1) - 90$ 

2. If  $\sqrt{5} + \sqrt{15} > \sqrt{a}$  for a an integer, determine the largest value of a.

3. The equation  $x^2 + bx + c = 0$  has distinct roots. If 2 is subtracted from each root, the results are the reciprocals of the original roots. Determine the ordered pair (b,c).

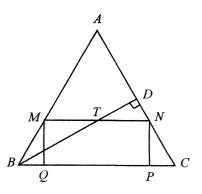
## **STATE PLAYOFFS – 2006**

#### **Round 3 – Geometry**

| 1 |  |
|---|--|
| 2 |  |
| 3 |  |

- 1. An equilateral triangle has a common side to a square with no common interior points, thus forming a pentagon whose outer perimeter is 20. A segment is constructed between non-common vertices of the square and triangle. Determine the number of square units in the area of the smaller region so formed.
- 2. If  $\hat{m}AB = \hat{m}CD = \hat{m}EF$ ,  $\hat{m}BC = \hat{m}DE = \hat{m}FA$ , and  $\hat{m}BC > \hat{m}AB$ , determine  $m \angle P$ . Note:  $\hat{m}AB$  means  $m(\operatorname{arc} AB)$

3. *ABC* is an equilateral triangle of side 2,  $\overline{BD}$  is an altitude, MNPQ is a rectangle, and T is the midpoint of  $\overline{MN}$ . Find the number of square units in the area of MNPQ.



#### **STATE PLAYOFFS – 2006**

## Round 4 – Algebra 2

| 1 | <u>m =</u> | <u>n =</u> |  |
|---|------------|------------|--|
| 2 | ****       |            |  |
| 3 |            |            |  |

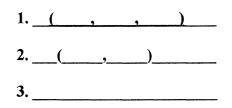
1. If  $\log_4 9 = a$  and  $\log_4 36 = b$ ,  $\log_8 \frac{216}{81}$  can be expressed in the form ma + nb, where m and n are simplified rational numbers. Determine the values of m and n.

2. Solve  $\left|\frac{6x-6}{x+3}\right| \le 3$ . Express your answer as an inequality.

3. Find the sum of all real solutions to  $\sqrt{1 - \sqrt{1 - x}} = x$ .

#### **STATE PLAYOFFS – 2006**

#### **Round 5 – Analytic Geometry**



1. Point M (2, -4) is  $\frac{2}{5}$  of the way from P(-4, -8) to point Q. The equation of the line through Q perpendicular to  $\overrightarrow{PQ}$ . can be written as ax + by = c, where a, b, and c are relatively prime integers and a > 0. Determine the ordered triple (a,b,c)

2. Given A(0, 0), B(1, 2), and D(13, 20), let C lie on  $\overline{BD}$  such that the area of  $\Delta ABC$  is half the area of  $\Delta ACD$ . Determine the coordinates of C.

3. Circle *O* passes through the point of intersection and the focal points of  $y = (x - 2)^2$ and  $y = (x + 2)^2$ . Determine the number of units in the radius of the circle.

#### **STATE PLAYOFFS - 2006**

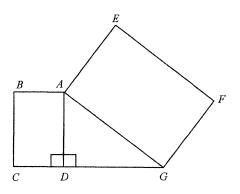
## **Round 6 – Trig and Complex Numbers**

| 1 |  |
|---|--|
| 2 |  |
| 3 |  |

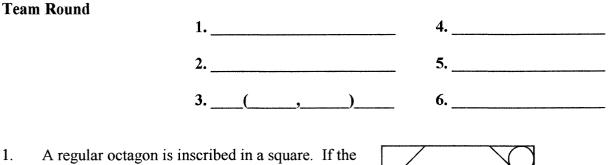
1. On the interval  $0 \le x \le 2\pi$ , how many points of intersection are there for the graphs of  $y = \tan\left(x - \frac{\pi}{6}\right)$  and  $y = 4\cos\left(x + \frac{\pi}{3}\right) + \frac{1}{2}$ .

2. If 
$$z_1 = 4c_1 s \frac{\pi}{6}$$
 and  $z_2 = 5c_1 s \frac{\pi}{4}$ , find the multiplicative inverse of  $(z_1 z_2)^2$ 

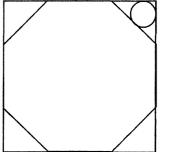
In right triangle ADG, AD = 6, DG = 8.
Rectangle ABCD ~ rectangle AEFG.
If BE = 26, find AE.



## **STATE PLAYOFFS – 2006**



radius of the inscribed circle shown at the right is  $6 - 4\sqrt{2}$  units, find the number of units in the side of the square.

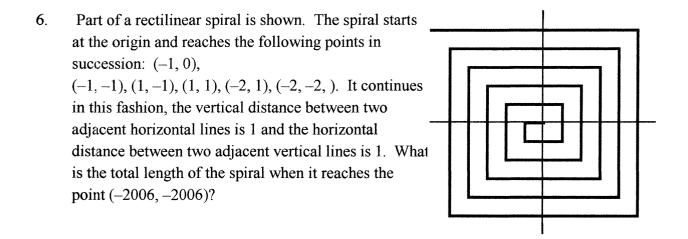


- 2. Let S consist of the set of points (x, y) satisfying both  $[x]^2 + [y]^2 = 1$  and  $x^2 + y^2 \le \frac{1}{4}$  where [x] is the greatest integer function. Determine the number of square units in the area of S.
- 3. Congruent parabolas  $P_1$  and  $P_2$  have vertices  $V_1(0,4)$  and  $V_2(6,0)$  respectively. If the parabolas are tangent to each other and have vertical axes of symmetry, determine the point of tangency.
- 4. Determine the distance between point A(-2, 4, -9) and the line whose equation is given parametrically by x = 5 + 4t, y = 4 + t, and z = -1 + 3t.

5. Given the rows of logarithm values below, where 10 is the base, determine the smallest row number such that the sum of the elements in the row exceeds 900. Note: In the table, the term between  $\log a$  and  $\log b$  in the row below is  $\log (ab)$ ; assume  $\log 2 = 0.301$ .

Row #

| 1 |       |       | log 1 | log 2 | log 1 |         |
|---|-------|-------|-------|-------|-------|---------|
| 2 |       | log   | 1 log | 2 log | 2 log | 1       |
| 3 |       | log 1 | log 2 | log 4 | log 2 | log 1   |
| 4 | log 1 | log2  | 2 log | 8 log | 8 log | 2 log 1 |



## **STATE PLAYOFFS – 2006**

# Answer Sheet

| Round 1 |     | Rou | Round 5           |  |
|---------|-----|-----|-------------------|--|
| 1.      | 49  | 1.  | (3, 2, 37)        |  |
| 2.      | 199 | 2.  | (5, 8)            |  |
| 3.      | 181 | 3.  | $\frac{289}{120}$ |  |

# Round 2

# Round 6

| 1. | $3(x^a-6)(x^a+5)$ | 1. | 4                                  |
|----|-------------------|----|------------------------------------|
|    | 37<br>(-2, -1)    | 2. | $\frac{1}{400} cis \frac{7\pi}{6}$ |
|    | (-, -)            | 3. | $5\sqrt{13}$                       |

| Round 3                      | Tea | <u>um</u>       |
|------------------------------|-----|-----------------|
| 1. 4                         | 1.  | 4               |
| 2. 60 $4\sqrt{3}$            | 2.  | $\frac{\pi}{8}$ |
| 3. $\frac{4\sqrt{3}}{9}$     | 3.  | (3, 2)          |
|                              | 4.  | 3               |
| Round 4                      | 5.  | 13              |
| 1. $m = -\frac{4}{3}, n = 1$ | 6.  | 16,092,132      |

2.  $-\frac{1}{3} \le x \le 5$ <br/>3.  $\frac{1+\sqrt{5}}{2}$ 

#### Solutions State Meet 2006

#### Round 1 Arithmetic and Number Theory:

- 1. Two digit primes: 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
- 2. Since (505)(20) = 10,100 and (505)(99) = 49,995, both five-digit numbers, it is clear that *n* must be a three-digit number and the product must be a six-digit number. Divide 100,000 by 505 and obtain 198 plus a fraction. Then if  $n = \boxed{199}$ , the product will just slip beyond 100,000, namely 100,495.
- 3.  $320^2 320 + 4 = 320^2 + 4 \cdot 320 + 4 5 \cdot 320 = (320 + 2)^2 1600 = 322^2 40^2 = (322 + 40)(322 40) = 362 \cdot 282 = 2 \cdot 181 \cdot 2 \cdot 141 = 2^2 \cdot 181 \cdot 3 \cdot 47$ . Ans: 181.

# Round 2 Algebra I:

- 1. Multiplying and factoring out a 3:  $3(x^{2a} x^a 30)$
- 2.  $(\sqrt{5} + \sqrt{15})^2 > a \rightarrow 20 + 10\sqrt{3} > a$ . Since  $\sqrt{3} \approx 1.732$ , 37.32 > a, making  $a = \boxed{37}$ .

3. The roots  $r_1$  and  $r_2$  are the two solutions to  $r - 2 = \frac{1}{r} \rightarrow r^2 - 2r - 1 = 0 \rightarrow (b,c) = \overline{(-2,-1)}$ .

#### Round 3 Geometry:

- 1. Area of Pentagon is  $16 + 4\sqrt{3}$ . Height of Pentagon is  $4 + 2\sqrt{3}$ . Half pentagon right triangle =  $(8 + 2\sqrt{3}) (4 + 2\sqrt{3}) = 4$ . For those who know trig, the law of sines gives a quick solution.
- 2. Let mAB = x and mBC = y. Then  $3x + 3y = 360^\circ \rightarrow x + y = 120^\circ$ . Since  $m \angle P = \frac{mAD - mBC}{2} = \frac{(2y + x) - y}{2} = \frac{y + x}{2} = \frac{120}{2}$ , then  $m \angle P = \boxed{60}$ . An interesting

aspect of this problem is that  $m \angle Q$  is not fixed since it equals  $\frac{y-x}{2}$  but it is bounded.

3. Let NC = 2x making PC = x, QP = 2 - 2x, and  $NP = x\sqrt{3}$ , giving an area of  $(2 - 2x)x\sqrt{3}$ for MNPQ. Since  $TN = \frac{1}{2}MN$ , TN = 1 - x and since  $\Delta TDN$  is a 30-60-90 triangle, then

$$DN = \frac{1}{2}(1-x). \text{ Since } DC = 1, \text{ then } NC + ND = DC \text{ implies that}$$
$$2x + \frac{1}{2}(1-x) = 1 \rightarrow 4x + 1 - x = 2 \rightarrow x = \frac{1}{3}, \text{ making } a(MNPQ) = \boxed{\frac{4\sqrt{3}}{9}}.$$

Round 4 Algebra II:

010

1. 
$$\frac{\log \frac{216}{81}}{\log_4 8} = \frac{\log 6^3 - \log_4 3}{\frac{3}{2}} = \left(\frac{3b}{2} - \frac{4a}{2}\right) \cdot \frac{2}{3} = b - \frac{4}{3}a = \frac{3b - 4a}{3}$$

- 2.  $\left|\frac{6x-6}{x+3}\right| \le 3 \Rightarrow \left|\frac{x-1}{x+3}\right| \le \frac{1}{2} \Rightarrow -\frac{1}{2} \le \frac{x-1}{x+3} \le \frac{1}{2} \Rightarrow 0 \le \frac{1}{2} + \frac{x-1}{x+3} \text{ and } \frac{x-1}{x+3} \frac{1}{2} \le 0.$ The left-hand inequality gives  $\frac{3x+1}{x+3} \ge 0 \Rightarrow x < -3 \text{ or } x \ge -\frac{1}{3}$ . The right-hand inequality gives  $\frac{x-5}{2(x+3)} \le 0 \Rightarrow -3 < x \le 5$ . The intersection is  $\left[-\frac{1}{3} \le x \le 5\right]$ .
- 3.  $\sqrt{1-\sqrt{1-x}} = x \rightarrow 1-\sqrt{1-x} = x^2 \rightarrow 1-x^2 = \sqrt{1-x} \rightarrow x^4 2x^2 + x = 0$ . From  $x(x^3 2x + 1) = 0$  we use synthetic division to discover that x = 1 is also a root giving  $x(x-1)(x^2 + x 1) = 0$ . This has roots 0, 1,  $\frac{-1+\sqrt{5}}{2}$ , and  $\frac{-1-\sqrt{5}}{2}$ . The last root is extraneous so the sum of the roots is  $0 + 1 + \frac{-1+\sqrt{5}}{2} = \frac{1+\sqrt{5}}{2}$ .

#### Round 5 Analytic Geometry:

- 1. Q(11, 2);  $m\overline{PQ} = \frac{2}{3}$ ;  $m \perp \overline{PQ} = -\frac{3}{2}$ ; This leads to 3x + 2y = 37.
- 2. Since the triangles have the same altitude, their bases must be in a ratio of 1 to 2 so C is the trisection point of  $\overline{BD}$  closest to B. Since B = (1,2) and D = (13, 20), then C is (5, 8)
- 3. From  $y = \frac{1}{4p}(x-h)^2$  we know that p, the distance from the vertex to the focal point, is  $p = \frac{1}{4}$ The parabolas intersect at (0, 4), the circle passes through  $A\left(-2, \frac{1}{4}\right), B(0, 4)$ , and  $C\left(2, \frac{1}{4}\right)$ . The

- 5. Neglecting the first and last terms in any row, note that in any one row, say the 4<sup>th</sup> row whose terms are log 2<sup>1</sup>, log 2<sup>3</sup>, log 2<sup>3</sup>, log 2<sup>1</sup>, the exponents are terms in Pascal's triangle. Since addition of logs results in the multiplication of the terms which gives the addition of exponents, the next row of terms, the 5<sup>th</sup> in this case, will also involve exponents drawn from Pascal's triangle, namely log 2<sup>1</sup>, log 2<sup>4</sup>, log 2<sup>6</sup>, log 2<sup>4</sup>, log 2<sup>1</sup>. The sum of the terms in the *n*th row of a Pascal's triangle starting with 1 is 2<sup>*n*-1</sup>. Here the sum will be log 2<sup>2<sup>*n*-1</sup></sup>. We want log 2<sup>2<sup>*n*-1</sup></sup> > 900 → 2<sup>*n*-1</sup>(.301) > 900 so 2<sup>*n*-1</sup> > 2990. Since 2<sup>11</sup> = 2048 and 2<sup>12</sup> = 4096, then *n*-1 > 11 → *n* > 12 → *n* = 13. The sum exceeds 900 in the 13th row.
- 6. Note that the lengths of the segments form the sum 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + ... Note also that the double-underlined lengths are lengths of segments that end at (-1, -1) and (-2, -2). Thus, the second segment of length 5 ends at (-3, -3), the second segment of length 7 ends at (-4, -4), ... Hence, the second segment of length 2n 1 ends at (-n, -n). In this case the second segment of length 4001 ends at (-2006, -2006). The length of the spiral is

$$2(1+2+3+\mathsf{K}+4001) = 2 \cdot \frac{(1+4011)}{2} \cdot 4011 = 4012 \cdot 4011 = \boxed{16,092,132}.$$