

STATE INVITATIONAL
MATH LEAGUE COMPETITION
March 31, 2006

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

STATE PLAYOFFS -- 2006

Round 1 Arithmetic and Number Theory

1.
2.
3. \qquad
4. What is the closest multiple of 7 to the median of all 2 -digit prime numbers?
5. For $n \geq 20$, determine the least integer value of n such that the product (505) n has twice as many digits as n.
6. Find the largest prime factor of $320^{2}-320+4$.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

STATE PLAYOFFS - 2006

Round 2 Algebra 1

1.
2.
3.

1. Factor completely: $3 x^{a}\left(x^{a}-1\right)-90$
2. If $\sqrt{5}+\sqrt{15}>\sqrt{a}$ for a an integer, determine the largest value of a.
3. The equation $x^{2}+b x+c=0$ has distinct roots. If 2 is subtracted from each root, the results are the reciprocals of the original roots. Determine the ordered pair (b, c).

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

STATE PLAYOFFS - 2006

Round 3 - Geometry

1.
2.
3.
4. An equilateral triangle has a common side to a square with no common interior points, thus forming a pentagon whose outer perimeter is 20 . A segment is constructed between non-common vertices of the square and triangle. Determine the number of square units in the area of the smaller region so formed.
5. If $\widehat{m} A B=\widehat{m} C D=\widehat{m} E F$,
$\widehat{m} B C=\widehat{m} D E=\widehat{m} F A$, and $\widehat{m} B C>\widehat{m} A B$,
determine $m \angle P$.
Note: $\widehat{m} A B$ means $m(\operatorname{arc} A B)$

6. $A B C$ is an equilateral triangle of side $2, \overline{B D}$ is an altitude, $M N P Q$ is a rectangle, and T is the midpoint of $\overline{M N}$. Find the number of square units in the area of $M N P Q$.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES STATE PLAYOFFS - 2006

Round 4 - Algebra 2

\qquad
2. \qquad
3. \qquad

1. If $\log _{4} 9=a$ and $\log _{4} 36=b, \log _{8} \frac{216}{81}$ can be expressed in the form $m a+n b$, where m and n are simplified rational numbers. Determine the values of m and n.
2. Solve $\left|\frac{6 x-6}{x+3}\right| \leq 3$. Express your answer as an inequality.
3. Find the sum of all real solutions to $\sqrt{1-\sqrt{1-x}}=x$.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

STATE PLAYOFFS - 2006

Round 5 - Analytic Geometry

2. \qquad
3.
.

1. Point $\mathrm{M}(2,-4)$ is $\frac{2}{5}$ of the way from $\mathrm{P}(-4,-8)$ to point Q . The equation of the line through Q perpendicular to $\overleftrightarrow{P Q}$. can be written as $a x+b y=c$, where a, b, and c are relatively prime integers and $a>0$. Determine the ordered triple (a, b, c)
2. Given $A(0,0), B(1,2)$, and $D(13,20)$, let C lie on $\overline{B D}$ such that the area of $\triangle A B C$ is half the area of $\triangle A C D$. Determine the coordinates of C.
3. Circle O passes through the point of intersection and the focal points of $y=(x-2)^{2}$ and $y=(x+2)^{2}$. Determine the number of units in the radius of the circle.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

STATE PLAYOFFS - 2006

Round 6 - Trig and Complex Numbers

1.
2.
3. \qquad
4. On the interval $0 \leq x \leq 2 \pi$, how many points of intersection are there for the graphs of $y=\tan \left(x-\frac{\pi}{6}\right)$ and $y=4 \cos \left(x+\frac{\pi}{3}\right)+\frac{1}{2}$.
5. If $z_{1}=4 \operatorname{cls} \frac{\pi}{6}$ and $z_{2}=5 \operatorname{cls} \frac{\pi}{4}$, find the multiplicative inverse of $\left(z_{1} z_{2}\right)^{2}$
6. In right triangle $A D G, A D=6, D G=8$.

Rectangle $A B C D \sim$ rectangle $A E F G$.
If $B E=26$, find $A E$.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

STATE PLAYOFFS - 2006

Team Round

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad , (_))
6. \qquad
7. A regular octagon is inscribed in a square. If the radius of the inscribed circle shown at the right is $6-4 \sqrt{2}$ units, find the number of units in the side of the square.

8. Let S consist of the set of points (x, y) satisfying both $[x]^{2}+[y]^{2}=1$ and $x^{2}+y^{2} \leq \frac{1}{4}$ where $[x]$ is the greatest integer function. Determine the number of square units in the area of S.
9. Congruent parabolas P_{1} and P_{2} have vertices $V_{1}(0,4)$ and $V_{2}(6,0)$ respectively. If the parabolas are tangent to each other and have vertical axes of symmetry, determine the point of tangency.
10. Determine the distance between point $A(-2,4,-9)$ and the line whose equation is given parametrically by $x=5+4 t, y=4+t$, and $z=-1+3 t$.
11. Given the rows of logarithm values below, where 10 is the base, determine the smallest row number such that the sum of the elements in the row exceeds 900 . Note: In the table, the term between $\log a$ and $\log b$ in the row below is $\log (a b)$; assume $\log 2=0.301$.

Row \#

1
$\log 1 \quad \log 2 \quad \log 1$
2
$\log 1 \quad \log 2 \quad \log 2 \quad \log 1$
$3 \quad \log 1 \quad \log 2 \quad \log 4 \quad \log 2 \quad \log 1$
$\begin{array}{lllllll}4 & \log 1 & \log 2 & \log 8 & \log 8 & \log 2 & \log 1\end{array}$
6. Part of a rectilinear spiral is shown. The spiral starts at the origin and reaches the following points in succession: $(-1,0)$, $(-1,-1),(1,-1),(1,1),(-2,1),(-2,-2$,$) . It continues$ in this fashion, the vertical distance between two adjacent horizontal lines is 1 and the horizontal distance between two adjacent vertical lines is 1 . What is the total length of the spiral when it reaches the point $(-2006,-2006)$?

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

STATE PLAYOFFS - 2006

Answer Sheet

Round 1

1. 49
2. 199
3. 181

Round 5

1. $(3,2,37)$
2. $(5,8)$
3. $\frac{289}{120}$

Round 6

1. 4
2. $\frac{1}{400} \operatorname{cis} \frac{7 \pi}{6}$
3. $5 \sqrt{13}$

Round 3

1. 4
2. 60
3. $\frac{4 \sqrt{3}}{9}$

Round 4

1. $m=-\frac{4}{3}, n=1$
2. $-\frac{1}{3} \leq x \leq 5$
3. $\frac{1+\sqrt{5}}{2}$

Team

1. 4
2. $\frac{\pi}{8}$
3. $(3,2)$
4. 3
5. 13
6. $16,092,132$

Solutions State Meet 2006

Round I Arithmetic and Number Theory:

1. Two digit primes: $11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89$, 97
2. Since $(505)(20)=10,100$ and $(505)(99)=49,995$, both five-digit numbers, it is clear that n must be a three-digit number and the product must be a six-digit number. Divide 100,000 by 505 and obtain 198 plus a fraction. Then if $n=199$, the product will just slip beyond 100,000, namely 100,495.
3. $32.0^{2}-320+4=320^{2}+4 \cdot 320+4-5 \cdot 320=(320+2)^{2}-1600=322^{2}-40^{2}=$ $(3: 22+40)(322-40)=362 \cdot 282=2 \cdot 181 \cdot 2 \cdot 141=2^{2} \cdot 181 \cdot 3 \cdot 47$. Ans: 181 .

Round 2 Algebra I:

1. Multiplying and factoring out a $3: 3\left(x^{2 a}-x^{a}-30\right)$
2. $(\sqrt{5}+\sqrt{15})^{2}>a \rightarrow 20+10 \sqrt{3}>a$. Since $\sqrt{3} \approx 1.732,37.32>a$, making $a=37$.
3. The roots r_{1} and r_{2} are the two solutions to $r-2=\frac{1}{r} \rightarrow r^{2}-2 r-1=0 \rightarrow$

$$
(b, c)=(-2,-1) .
$$

Round 3 Geometry:

1. Area of Pentagon is $16+4 \sqrt{3}$. Height of Pentagon is $4+2 \sqrt{3}$. Half pentagon - right triangle $=$ $(8+2 \sqrt{3})-(4+2 \sqrt{3})=4$. For those who know trig, the law of sines gives a quick solution.
2. Let $m^{\mathrm{a}} A B=x$ and $m \stackrel{\beta}{B} C=y$. Then $3 x+3 y=360^{\circ} \rightarrow x+y=120^{\circ}$. Since $m \angle P=\frac{m^{\mathrm{a}} A D-m^{\mathrm{a}} \mathrm{B} C}{2}=\frac{(2 y+x)-y}{2}=\frac{y+x}{2}=\frac{120}{2}$, then $m \angle P=60$. An interesting aspect of this problem is that $m \angle Q$ is not fixed since it equals $\frac{y-x}{2}$ but it is bounded.
3. Let $N C=2 x$ making $P C=x, Q P=2-2 x$, and $N P=x \sqrt{3}$, giving an area of $(2-2 x) x \sqrt{3}$ for $M N P Q$. Since $T N=\frac{1}{2} M N, T N=1-x$ and since $\triangle T D N$ is a 30-60-90 triangle, then
$D N=\frac{1}{2}(1-x)$. Since $D C=1$, then $N C+N D=D C$ implies that
$2 x+\frac{1}{2}(1-x)=1 \rightarrow 4 x+1-x=2 \rightarrow x=\frac{1}{3}$, making $a(M N P Q)=\frac{4 \sqrt{3}}{9}$.

Round 4 Algebra II:

1. $\frac{\log \frac{216}{81}}{\log _{4} 8}=\frac{\log 6^{3}-\log _{4} 3}{\frac{3}{2}}=\left(\frac{3 b}{2}-\frac{4 a}{2}\right) \cdot \frac{2}{3}=b-\frac{4}{3} a=\frac{3 b-4 a}{3}$
2. $\left|\frac{6 x-6}{x+3}\right| \leq 3 \rightarrow\left|\frac{x-1}{x+3}\right| \leq \frac{1}{2} \rightarrow-\frac{1}{2} \leq \frac{x-1}{x+3} \leq \frac{1}{2} \rightarrow 0 \leq \frac{1}{2}+\frac{x-1}{x+3}$ and $\frac{x-1}{x+3}-\frac{1}{2} \leq 0$.

The left-hand inequality gives $\frac{3 x+1}{x+3} \geq 0 \rightarrow x<-3$ or $x \geq-\frac{1}{3}$. The right-hand inequality gives $\frac{x-5}{2(x+3)} \leq 0 \rightarrow-3<x \leq 5$. The intersection is $-\frac{1}{3} \leq x \leq 5$.
3. $\sqrt{1-\sqrt{1-x}}=x \rightarrow 1-\sqrt{1-x}=x^{2} \rightarrow 1-x^{2}=\sqrt{1-x} \rightarrow x^{4}-2 x^{2}+x=0$. From $x\left(x^{3}-2 x+1\right)=0$ we use synthetic division to discover that $x=1$ is also a root giving $x(x-1)\left(x^{2}+x-1\right)=0$. This has roots $0,1, \frac{-1+\sqrt{5}}{2}$, and $\frac{-1-\sqrt{5}}{2}$. The last root is extraneous so the sum of the roots is $0+1+\frac{-1+\sqrt{5}}{2}=\frac{1+\sqrt{5}}{2}$.

Round 5 Analytic Geometry:

1. $Q(11,2)$.; $m \overline{P Q}=\frac{2}{3} ; m \perp \overline{P Q}=-\frac{3}{2}$; This leads to $3 x+2 y=37$.
2. Since the triangles have the same altitude, their bases must be in a ratio of 1 to 2 so C is the trisection point of $\overline{B D}$ closest to B. Since $B=(1,2)$ and $D=(13,20)$, then C is $(5,8)$
3. From $y=\frac{1}{4 p}(x-h)^{2}$ we know that p, the distance from the vertex to the focal point, is $p=\frac{1}{4}$.

The parabolas intersect at $(0,4)$, the circle passes through $A\left(-2, \frac{1}{4}\right), B(0,4)$, and $C\left(2, \frac{1}{4}\right)$. The
5. Neglecting the first and last terms in any row, note that in any one row, say the $4^{\text {th }}$ row whose terms are $\log 2^{1}, \log 2^{3}, \log 2^{3}, \log 2^{1}$, the exponents are terms in Pascal's triangle. Since addition of logs results in the multiplication of the terms which gives the addition of exponents, the next row of terms, the $5^{\text {th }}$ in this case, will also involve exponents drawn from Pascal's triangle, namely $\log 2^{1}, \log 2^{4}, \log 2^{6}, \log 2^{4}, \log 2^{1}$. The sum of the terms in the nth row of a Pascal's triangle starting with 1 is 2^{n-1}. Here the sum will be $\log 2^{2^{n-1}}$. We want $\log 2^{2^{n-1}}>900 \rightarrow 2^{n-1}(.301)>900$ so $2^{n-1}>2990$. Since $2^{11}=2048$ and $2^{12}=4096$, then $n-1>11 \rightarrow n>12 \rightarrow n=13$. The sum exceeds 900 in the 13 th row.
6. Note that the lengths of the segments form the sum $1+\underline{\underline{1}}+2+2+3+\underline{\underline{3}}+4+4+\ldots$. Note also that the double-underlined lengths are lengths of segments that end at $(-1,-1)$ and $(-2,-2)$. Thus, the second segment of length 5 ends at $(-3,-3)$, the second segment of length 7 ends at $(-4$, $-4), \ldots$ Hence, the second segment of length $2 n-1$ ends at $(-n,-n)$. In this case the second segment of length 4001 ends at $(-2006,-2006)$. The length of the spiral is

$$
2(1+2+3+K+4001)=2 \cdot \frac{(1+4011)}{2} \cdot 4011=4012 \cdot 4011=16,092,132 .
$$

