MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES
 STATE PLAYOFFS - 2004

Round 1 Arithmetic and Number Theory

1.
2. \qquad
3. \qquad
4. How many integers have a reciprocal that is greater than $\frac{1}{50.1}$ and less than $\frac{1}{\pi}$?
5. Let $9_{b}, 10_{b}$, and 11_{b} be numbers in base b. In what positive base b do the numbers form a Pythagorean Triple?
6. Let P_{j} be the $j^{\text {th }}$ prime number. $P_{n}=103$ is the $n^{\text {th }}$ prime number. $k=P_{n+3}+P_{n+4}$. How many different positive integral factors does k have?

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES STATE PLAYOFFS - 2004

Round 2 Algebra 1

1.
2. \qquad
3. \qquad
4. Factor completely: $24 x^{2}+6 x y-135 y^{2}$
5. Find the largest integer value of x such that $\frac{1}{5-\sqrt{x}}<-\frac{1}{100}$.
6. Given the system $\left\{\begin{array}{l}a x+b y=a^{2} \\ b x+a y=b^{2}\end{array}\right.$ with $a \neq \pm b$, find $x-y$ in simplest form.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES
 STATE PLAYOFFS - 2004

Round 3 - Geometry

1. \qquad
2. \qquad
3. \qquad
4. Each side of square $A B C D$ is of length $12 \mathrm{~cm} . E$ is the midpoint of $\overline{A B}, F$ is the trisection point of $\overline{B C}$ closer to B and G is on $\overline{C D}$ such that $C G=\frac{1}{4} C D$. How many square centimeters are in the area of $\triangle E F G$?
5. Given $0^{\circ}<\theta<90^{\circ}$, if the ratio of the complement of θ to the supplement of θ is less than one-tenth, determine the number of integer values of θ.
6. $A B=8$ and $A E=$ 27. $\overline{A B} \perp \overline{B C}, \overline{A C} \perp \overline{C D}$, and $\overline{A D} \perp \overline{D E}$. Also, $m \angle B A C=m \angle C A D=m \angle D A E$. Find the number of square units in the area of $A B C D E$.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES
 STATE PLAYOFFS - 2004

Round 4 - Algebra 2

1.
2. \qquad
3.
4. $\left(\frac{27}{125}\right)^{-2 / 3}+\sqrt[4]{\frac{81}{16}}$ can be written in the form $\frac{a}{b}$, where a and b are relatively prime. What is the sum of a and b ?
5. If $\log _{16}\left(29+\log _{16} b\right)=\frac{5}{4}$, determine the value of b.
6. Let a_{n} be the $n^{\text {th }}$ term of an arithmetic progression. Let S_{n} be the sum of the first n terms of the arithmetic progression with $a_{1}=1$ and $a_{3}=3 a_{8}$. Determine the largest possible value of S_{n}.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

STATE PLAYOFFS - 2004

Round 5 - Analytic Geometry

1. \qquad
2. \qquad
3. \qquad
4. Points $A(-10,0), B(0,5)$, and $C(10,0)$ are the vertices of a triangle. How many points $P(x, y)$ are inside the triangle given that x and y are integers.
5. An ellipse has the equation $\frac{(x-2)^{2}}{4}+\frac{(y)^{2}}{16}=1$. Find the endpoint in the first quadrant of the chord of the ellipse which passes through its center and is perpendicular to the line whose equation is $x=2 y$. Express your answer as an ordered pair with the coordinates in exact simplified form.
6. Starting at $P(2,5)$, a bug walks a straight line path, make a 90° turn, and then walks another straight line path until it reaches the point $Q(8,13)$. Determine the greatest possible distance from the x-axis that the bug can attain.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES
 STATE PLAYOFFS - 2004

Round 6 - Trig and Complex Numbers

1.
2. \qquad
3. \qquad
4. Simplify $(3+4 i)^{2}-(1-2 i)^{3}$ into the form $a+b i$.
5. If $\sec x-\tan x=3$, determine the numerical value of $\sec x+\tan x$.
6. Regular hexagon $A B C D E F$ is inscribed in a circle.
X is the midpoint of arc $\overparen{D C}$. Determine the numerical value of $\frac{A X}{D X}$.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES
 STATE PLAYOFFS - 2004

Team Round
\qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad

1. Let f be a periodic function with a period of 3 defined for all real numbers. If, on the interval $(1,4]$, an equation for $f(x)=y$ is $2 x+3 y=11$ and on the interval $(2002,2005]$ an equation for $f(x)=y$ is $a x+b y=c$ where a, b, and c are relatively prime positive integers, determine the ordered triple (a, b, c).
2. In kite $A B C D, A B=A D$ and $C B=C D$. If $m \angle A=108^{\circ}$ and $m \angle C=36^{\circ}$ then the ratio of the area of $\triangle A B D$ to the area of $\triangle C B D$ can be written in the form $\frac{a-b \tan ^{2}\left(36^{\circ}\right)}{c}$ where a, b, and c are relatively prime positive integers. Determine the ordered triple (a, b, c).
3. An infinite number of squares are inscribed in right $\triangle A B C$ as indicated in the diagram. If the sum of the areas of the squares is one-fifth the area of $\triangle A B C$, determine the ratio of $A B$ to $B C$.

4. $A B C D$ is an isosceles trapezoid with bases $\overline{A B}$ and $\overline{D C}$ with $A B<D C . P$ is the point of intersection of $\overline{A C}$ and $\overline{B D}$. Point X is chosen at random from the interior of the trapezoid. If the probability that X lies in $\triangle A P D$ is $\frac{1}{8}$, find $\frac{D C}{A B}$.
5. Determine all values of a such that $\ln a^{2}+\left(\ln a^{2}\right)^{2}+\left(\ln a^{2}\right)^{3}+\left(\ln a^{2}\right)^{4}+\ldots=3\left(\ln a+(\ln a)^{2}+(\ln a)^{3}+(\ln a)^{4}+\ldots\right)$.
6. For $x \in\{1,2,3, \ldots, 100\}$, determine the number of positive integer values of y such that $y^{2}=x(x+1)(x+2)(x+3)+1$.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

STATE PLAYOFFS - 2004

Answer Sheet

Round 1

1. 47
2. 40
3. 20

Round 2

1. $3(4 x-9 y)(2 x+5 y)$
2. 11024
3. $a+b$

Round 5

1. 36
2. $(2-\sqrt{2}, 2 \sqrt{2})$
3. 14

Round 6

1. $4+22 i$
2. $\frac{1}{3}$
3. $2+\sqrt{3}$

Team

1. $(2,3,4013)$
2. $(1,1,2)$
3. 8
4. $3+2 \sqrt{2}$
5. $1, e^{1 / 4}$
6. 100
7. $\frac{100}{19}$

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

STATE PLAYOFFS - 2004 - Solutions

Round 1

1. The numbers from 4 through 50,47 altogether.
2. $9^{2}+(b-0)^{2}=(b+1)^{2} \rightarrow 81=2 b+1 \rightarrow b=40$.
3. $k=113+127=240=2^{4} \cdot 3^{1} \cdot 5^{1}$ which has $5 \cdot 2 \cdot 2=20$ factors.

Round 2

1. $3(4 x-9 y)(2 x+5 y)$
2. $\frac{1}{5-\sqrt{x}}<-\frac{1}{100} \rightarrow 5-\sqrt{x}>-100 \rightarrow 105>\sqrt{x} \rightarrow 11025>x \rightarrow x=11024$.
3. Multiplying the top equation by b and the bottom by a and subtracting eliminates x and gives $y=\frac{a b(a-b)}{b^{2}-a^{2}}=\frac{-a b}{a+b}$. Multiplying the top by a and the bottom by b and subtracting eliminates y and gives $x=\frac{a^{3}-b^{3}}{a^{2}-b^{2}}=\frac{a^{2}+a b+b^{2}}{a+b}$.
Thus, $x-y=\frac{a^{2}+2 a b+b^{2}}{a+b}=a+b$.

Round 3

1. Area of square $=144 \mathrm{~cm}^{2}$. Subtract areas of trapezoid $A E G D, \triangle E B F$, and $\triangle F C G$.
2. Since $\frac{90-\theta}{180-\theta}<\frac{1}{10}$ then $900-10 \cdot \theta<180-\theta \rightarrow \theta>80$. But since $\theta<90$, $\theta=81,82, \ldots, 89$, making for a total of 9 values of θ.
3. Since the three triangles are similar, $\frac{8}{x}=\frac{x}{y} \rightarrow y=\frac{x^{2}}{8}$ and $\frac{x}{y}=\frac{y}{27} \quad \rightarrow \quad x=\frac{y^{2}}{27}$. Thus, $y=\frac{y^{4}}{8 \cdot 27^{2}} \rightarrow$ $y^{3}=2^{3} \cdot 9^{3} \rightarrow y=18$ and $x=12$. Then $12^{2}-8^{2}=B C^{2}$ so $B C=4 \sqrt{5}$ and since the scale factor is $3 / 2, C D=6 \sqrt{5}$ and $D E=9 \sqrt{5}$. The sum of the areas is
 $16 \sqrt{5}+36 \sqrt{5}+81 \sqrt{5}=133 \sqrt{5}$.
4. $\frac{25}{9}+\frac{3}{2}=\frac{77}{18} ; 77+18=95$.
5. $\quad \log _{16}\left(29+\log _{16} b\right)=\frac{5}{4} \rightarrow 29+\log _{16} b=16^{5 / 4}=32 \rightarrow \log _{16} b=3 \rightarrow b=16^{3}$.

Thus, $b=4096$.
3. From $a_{3}=3 a_{8}$ we obtain $1+2 d=3(1+7 d) \rightarrow d=-\frac{2}{19}$. Then

$$
S_{n}=\frac{\left(2+(n-1)\left(-\frac{2}{19}\right)\right) n}{2}=\frac{19 n-n(n-1)}{19}=\frac{-n^{2}+20 n}{19} . \text { The maximum occurs }
$$

at $n=\frac{-20}{-2}=10$. The maximum of $S_{n}=\frac{-100+200}{19}=\frac{100}{19}$

Round 5

1 The points are on the horizontal lines $\mathrm{y}=1,2,3,4$. Considering the slopes of the segments from $(0,5)$ to $(10,0)$ and $(-10,0)$ are $-1 / 2$ and $1 / 2$, the points lie between $(7,1)$ and $(-7,1) ;(5,1)$ and $(-5,1) ;(3,3)$ and $-3,3)$; and $(1,4)$ and $(-1,4)$.
2. The center of the ellipse is $(2,0)$ and the slope of the chord is -2 . The equation of the chord is $y=-2 x+4$. Substituting into the equation of the ellipse gives $y^{2}=8$, leading to $x=2-\sqrt{2}$ and $y=2 \sqrt{2}$. The ordered pair is $(2-\sqrt{2}, 2 \sqrt{2})$
3. Let A be the point at which the bug makes a right hand turn. Then $P A Q$ is a right triangle and can be inscribed in a circle. Thus, all points A lie on a circle with diameter $\overline{P Q}$. The circle's diameter equals $\sqrt{(8-2)^{2}+(13-5)^{2}}=10$, the circle's center is the midpoint of $\overline{P Q}$, namely $(5,9)$, making the circle's equation equal $(x-5)^{2}+(y-9)^{2}=25$. The high point occurs directly above the center where $x=5$ making $y=14$.

Round 6

1. $(3+4 i)^{2}=-7+24 i ;(1-2 i)^{3}=-11+2 i ;-7+24 i+11-2 i=4+22 i$.
2. $\quad(\sec x-\tan x)(\sec x+\tan x)=3(\sec x+\tan x) \rightarrow \sec ^{2} x-\tan ^{2} x=3(\sec x+\tan x)$ giving $1=3(\sec x+\tan x)$ so $\sec x+\tan x=\frac{1}{3}$.
3. Since $\overline{A D}$ is a diameter, $A X D$ is a right triangle and since $m \overparen{D X}=30^{\circ}$, then $m \angle D A X=15^{\circ}$. Set $A D=1$, then $\frac{A X}{D X}=\frac{\sin 75^{\circ}}{\sin 15^{\circ}}=\frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}}=2+\sqrt{3}$.

MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

STATE PLAYOFFS - 2001 - Solutions - Team Round

1. On $[1,4$] the linear function joins $(1,3)$ and $(4,1)$, so on $[2002,2005]$ the linear function will connect $(2002,3)$ and $(2005,1)$. The equation is $y-1=-\frac{2}{3}(x-2005)$ giving $2 x+3 y=4013$ so the answer is $(2,3,4013)$.
2. Since the triangles have a common base, the ratio of their areas equals the ratio of their heights. Since $\tan 36=\frac{h}{x}$, then $h=x \tan 36 \quad$ Since $\tan 72=\frac{k}{x}$ then $k=x \tan 72$.

The answer is $(1,1,2)$

3. Let x be the side of the first square and y be the side of the second square. Since $\frac{a-x}{x}=\frac{a}{b}$ then $x=\frac{a b}{a+b}$. Applying the same approach to the square with side y inscribed in a triangle with legs x and $b-x$, then
$y=\frac{x(b-x)}{x+(b-x)}=\frac{x(b-x)}{b}=\frac{a b}{a+b}\left(b-\frac{a b}{a+b}\right) \cdot \frac{1}{b}=$ $\left(\frac{a b}{a+b}\right)\left(\frac{b}{a+b}\right)$. Hence $\frac{b}{a+b}$ is the common ratio of the

sides. The sum of the areas equals
$\left(\frac{a b}{a+b}\right)^{2}+\left(\frac{a b}{a+b}\right)^{2}\left(\frac{b}{a+b}\right)^{2}+\left(\frac{a b}{a+b}\right)^{2}\left(\frac{b}{a+b}\right)^{4}+K=\frac{\left(\frac{a b}{a+b}\right)^{2}}{1-\frac{b^{2}}{(a+b)^{2}}}=\frac{a b^{2}}{a+2 b}$. Thus,
$\frac{1}{5}$ area $\triangle A B C=\frac{1}{5}\left(\frac{1}{2} a b\right)=\frac{a b^{2}}{a+2 b} \rightarrow \frac{b}{a+2 b}=\frac{1}{10}$ gives $\frac{a}{b}=8$.
4. It is helpful to know that the areas of $\triangle P B C$ and $\triangle P A D$ are equal and that the areas of $\triangle P A B$, $\triangle P B C$, and $\triangle P C D$ form an increasing geometric progression. Let the area of $\triangle P A B=x$, then the other areas are as marked on the diagram. Thus,
$\frac{2 x^{2}}{x+2 x^{2}+x^{3}}=\frac{1}{4}$ gives $x^{2}-6 x+1=0$.

Since $\frac{D C}{A B}=\sqrt{\frac{x^{3}}{x}}=x$, we solve the equation and obtain $x=3+2 \sqrt{2}$.
5. $\frac{\ln a^{2}}{1-\ln a^{2}}=\frac{3 \ln a}{1-\ln a} \rightarrow \frac{2 \ln a}{1-2 \ln a}=\frac{3 \ln a}{1-\ln a} \rightarrow 2(\ln a)-2(\ln a)^{2}=3 \ln a-6(\ln a)^{2}$
$\rightarrow 4(\ln a)^{2}-\ln a=0 \rightarrow \ln a=0$ or $\frac{1}{4}$. Thus, $a=1, e^{1 / 4}$.
6. Subtract 1 from both sides obtaining: $(y-1)(y+1)=x(x+1)(x+2)(x+3)=$ $(x(x+3))((x+1)(x+2))=\left(x^{2}+3 x\right)\left(x^{2}+3 x+2\right)$. Since $y-1$ and $y+1$ are two integers differing by 2 and $x^{2}+3 x$ and $x^{2}+3 x+2$ are two integers differing by 2 , then for each value of x in $\{1,2, \ldots, 100\}$ there is a value of y for which
$(y-1)(y+1)=x(x+1)(x+2)(x+3)$. For example, when $x=1, y=5$; when $x=100, y=10,301$. The answer is 100 .

