STATE PLAYOFFS – 2004

Rou	Ind 1 Arithmetic and Number Theory	
	1	
	2	
	3	
1.	How many integers have a reciprocal that is greater than $\frac{1}{50.1}$ and less than $\frac{1}{\pi}$?	

2. Let $9_b, 10_b$, and 11_b be numbers in base *b*. In what positive base *b* do the numbers form a Pythagorean Triple?

3. Let P_j be the j^{th} prime number. $P_n = 103$ is the n^{th} prime number. $k = P_{n+3} + P_{n+4}$. How many different positive integral factors does k have?

STATE PLAYOFFS – 2004

Round 2 Algebra 1

 1.

 2.

 3.

1. Factor completely: $24x^2 + 6xy - 135y^2$

2. Find the largest integer value of x such that $\frac{1}{5-\sqrt{x}} < -\frac{1}{100}$.

3. Given the system $\begin{cases} ax + by = a^2 \\ bx + ay = b^2 \end{cases}$ with $a \neq \pm b$, find x - y in simplest form.

STATE PLAYOFFS – 2004

Round 3 – Geometry

1	
2	
3.	

1. Each side of square *ABCD* is of length 12 cm. *E* is the midpoint of \overline{AB} , *F* is the trisection point of \overline{BC} closer to *B* and *G* is on \overline{CD} such that $CG = \frac{1}{4}CD$. How many square centimeters are in the area of ΔEFG ?

2. Given $0^{\circ} < \theta < 90^{\circ}$, if the ratio of the complement of θ to the supplement of θ is less than one-tenth, determine the number of integer values of θ .

3. AB = 8 and AE = 27. $\overline{AB} \perp \overline{BC}$, $\overline{AC} \perp \overline{CD}$, and $\overline{AD} \perp \overline{DE}$. Also, $m \angle BAC = m \angle CAD = m \angle DAE$. Find the number of square units in the area of ABCDE.

STATE PLAYOFFS – 2004

Round 4 – Algebra 2

1.		
2.		
3.		

1. $\left(\frac{27}{125}\right)^{-2/3} + \sqrt[4]{\frac{81}{16}}$ can be written in the form $\frac{a}{b}$, where *a* and *b* are relatively prime. What is the sum of *a* and *b*?

2. If
$$\log_{16} (29 + \log_{16} b) = \frac{5}{4}$$
, determine the value of b.

3. Let a_n be the n^{th} term of an arithmetic progression. Let S_n be the sum of the first *n* terms of the arithmetic progression with $a_1 = 1$ and $a_3 = 3a_8$. Determine the largest possible value of S_n .

STATE PLAYOFFS – 2004

Round 5 – Analytic Geometry

1.	
2.	
3.	

1. Points A(-10, 0), B(0, 5), and C(10, 0) are the vertices of a triangle. How many points P(x, y) are inside the triangle given that x and y are integers.

2. An ellipse has the equation $\frac{(x-2)^2}{4} + \frac{(y)^2}{16} = 1$. Find the endpoint in the first quadrant of the chord of the ellipse which passes through its center and is perpendicular to the line whose equation is x = 2y. Express your answer as an ordered pair with the coordinates in exact simplified form.

3. Starting at P(2, 5), a bug walks a straight line path, make a 90° turn, and then walks another straight line path until it reaches the point Q(8, 13). Determine the greatest possible distance from the *x*-axis that the bug can attain.

STATE PLAYOFFS – 2004

Round 6 – Trig and Complex Numbers

1			
2			
3.			

1. Simplify $(3+4i)^2 - (1-2i)^3$ into the form a + bi.

2. If $\sec x - \tan x = 3$, determine the numerical value of $\sec x + \tan x$.

3. Regular hexagon *ABCDEF* is inscribed in a circle. *X* is the midpoint of arc \widehat{DC} . Determine the numerical value of $\frac{AX}{DX}$.

STATE PLAYOFFS – 2004

- 1. Let *f* be a periodic function with a period of 3 defined for all real numbers. If, on the interval (1,4], an equation for f(x) = y is 2x + 3y = 11 and on the interval (2002, 2005] an equation for f(x) = y is ax + by = c where *a*, *b*, and *c* are relatively prime positive integers, determine the ordered triple (a, b, c).
- 2. In kite *ABCD*, *AB* = *AD* and *CB* = *CD*. If $m \angle A = 108^{\circ}$ and $m \angle C = 36^{\circ}$ then the ratio of the area of $\triangle ABD$ to the area of $\triangle CBD$ can be written in the form $\frac{a b \tan^2(36^{\circ})}{c}$ where *a*, *b*, and *c* are relatively prime positive integers. Determine the ordered triple (a, b, c).
- 3. An infinite number of squares are inscribed in right ΔABC as indicated in the diagram. If the sum of the areas of the squares is one-fifth the area of ΔABC , determine the ratio of AB to BC.

- 4. *ABCD* is an isosceles trapezoid with bases \overline{AB} and \overline{DC} with AB < DC. *P* is the point of intersection of \overline{AC} and \overline{BD} . Point *X* is chosen at random from the interior of the trapezoid. If the probability that *X* lies in ΔAPD is $\frac{1}{8}$, find $\frac{DC}{AB}$.
- 5. Determine all values of *a* such that $\ln a^{2} + (\ln a^{2})^{2} + (\ln a^{2})^{3} + (\ln a^{2})^{4} + \dots = 3(\ln a + (\ln a)^{2} + (\ln a)^{3} + (\ln a)^{4} + \dots).$
- 6. For $x \in \{1, 2, 3, ..., 100\}$, determine the number of positive integer values of y such that $y^2 = x(x+1)(x+2)(x+3)+1$.

STATE PLAYOFFS – 2004

Answer Sheet

Round 1	Round 5	
1. 47	1. 36	
2. 40	2. $(2-\sqrt{2},2\sqrt{2})$	
3. 20	3. 14	
Round 2	Round 6	
1. $3(4x - 9y)(2x + 5y)$	1. $4 + 22i$	
2. 11024	2. $\frac{1}{3}$	
3. $a+b$	3. $2 + \sqrt{3}$	
Round 3	Team	
1. 30	1. (2, 3, 4013)	
2. 9	2. (1,1,2)	
3. 133√5	3. 8	
Round 4	4. $3 + 2\sqrt{2}$	
1. 95	5. 1, $e^{1/4}$	
2. 4096	6. 100	
3. $\frac{100}{19}$		

STATE PLAYOFFS – 2004 – Solutions

Round 1

- 1. The numbers from 4 through 50, 47 altogether.
- 2. $9^{2} + (b-0)^{2} = (b+1)^{2} \rightarrow 81 = 2b+1 \rightarrow b = 40$.
- 3. $k = 113 + 127 = 240 = 2^4 \cdot 3^1 \cdot 5^1$ which has $5 \cdot 2 \cdot 2 = 20$ factors.

Round 2

1.
$$3(4x - 9y)(2x + 5y)$$

2.
$$\frac{1}{5-\sqrt{x}} < -\frac{1}{100} \to 5-\sqrt{x} > -100 \to 105 > \sqrt{x} \to 11025 > x \to x = 11024.$$

3. Multiplying the top equation by *b* and the bottom by *a* and subtracting eliminates *x* and gives $y = \frac{ab(a-b)}{b^2 - a^2} = \frac{-ab}{a+b}$. Multiplying the top by *a* and the bottom by *b* and subtracting eliminates *y* and gives $x = \frac{a^3 - b^3}{a^2 - b^2} = \frac{a^2 + ab + b^2}{a+b}$. Thus, $x - y = \frac{a^2 + 2ab + b^2}{a+b} = a + b$.

Round 3

- 1. Area of square = 144 cm². Subtract areas of trapezoid *AEGD*, ΔEBF , and ΔFCG .
- 2. Since $\frac{90-\theta}{180-\theta} < \frac{1}{10}$ then $900 10\cdot\theta < 180 \theta \rightarrow \theta > 80$. But since $\theta < 90$, $\theta = 81, 82, \dots, 89$, making for a total of 9 values of θ .
- 3. Since the three triangles are similar, $\frac{8}{x} = \frac{x}{y} \rightarrow y = \frac{x^2}{8}$ and $\frac{x}{y} = \frac{y}{27} \rightarrow x = \frac{y^2}{27}$. Thus, $y = \frac{y^4}{8 \cdot 27^2} \rightarrow$ $y^3 = 2^3 \cdot 9^3 \rightarrow y = 18$ and x = 12. Then $12^2 - 8^2 = BC^2$ so $BC = 4\sqrt{5}$ and since the scale factor is 3/2, $CD = 6\sqrt{5}$ and $DE = 9\sqrt{5}$. The sum of the areas is $16\sqrt{5} + 36\sqrt{5} + 81\sqrt{5} = 133\sqrt{5}$.

Round 4

1.
$$\frac{25}{9} + \frac{3}{2} = \frac{77}{18}$$
; 77 + 18 = 95.

2.
$$\log_{16} (29 + \log_{16} b) = \frac{5}{4} \rightarrow 29 + \log_{16} b = 16^{5/4} = 32 \rightarrow \log_{16} b = 3 \rightarrow b = 16^3.$$

Thus, $b = 4096.$

3. From $a_3 = 3a_8$ we obtain $1 + 2d = 3(1 + 7d) \rightarrow d = -\frac{2}{19}$. Then

$$S_n = \frac{\left(2 + \left(n - 1\right)\left(-\frac{2}{19}\right)\right)n}{2} = \frac{19n - n(n-1)}{19} = \frac{-n^2 + 20n}{19}.$$
 The maximum occurs
at $n = \frac{-20}{-2} = 10$. The maximum of $S_n = \frac{-100 + 200}{19} = \frac{100}{19}$

Round 5

- 1 The points are on the horizontal lines y = 1,2,3,4. Considering the slopes of the segments from (0, 5) to (10, 0) and (-10, 0) are -1/2 and 1/2, the points lie between (7, 1) and (-7, 1); (5, 1) and (-5, 1); (3, 3) and -3, 3); and (1, 4) and (-1, 4).
- 2. The center of the ellipse is (2, 0) and the slope of the chord is -2. The equation of the chord is y = -2x + 4. Substituting into the equation of the ellipse gives $y^2 = 8$, leading to $x = 2 \sqrt{2}$ and $y = 2\sqrt{2}$. The ordered pair is $(2 \sqrt{2}, 2\sqrt{2})$
- 3. Let *A* be the point at which the bug makes a right hand turn. Then *PAQ* is a right triangle and can be inscribed in a circle. Thus, all points *A* lie on a circle with diameter \overline{PQ} . The circle's diameter equals $\sqrt{(8-2)^2 + (13-5)^2} = 10$, the circle's center is the midpoint of \overline{PQ} , namely (5, 9), making the circle's equation equal $(x-5)^2 + (y-9)^2 = 25$. The high point occurs directly above the center where x = 5 making y = 14.

Round 6

- 1. $(3+4i)^2 = -7 + 24i; (1-2i)^3 = -11 + 2i; -7 + 24i + 11 2i = 4 + 22i.$
- 2. $(\sec x \tan x)(\sec x + \tan x) = 3(\sec x + \tan x) \rightarrow \sec^2 x \tan^2 x = 3(\sec x + \tan x)$ giving $1 = 3(\sec x + \tan x)$ so $\sec x + \tan x = \frac{1}{3}$.
- 3. Since *AD* is a diameter, *AXD* is a right triangle and

since
$$\widehat{mDX} = 30^\circ$$
, then $m \angle DAX = 15^\circ$. Set $AD = 1$,

then
$$\frac{AX}{DX} = \frac{\sin 75^{\circ}}{\sin 15^{\circ}} = \frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} - \sqrt{2}} = 2 + \sqrt{3}.$$

STATE PLAYOFFS - 2001 - Solutions - Team Round

- 1. On [1, 4] the linear function joins (1, 3) and (4, 1), so on [2002, 2005] the linear function will connect (2002, 3) and (2005, 1). The equation is $y 1 = -\frac{2}{3}(x 2005)$ giving 2x + 3y = 4013 so the answer is (2, 3, 4013).
- 2. Since the triangles have a common base, the ratio of their areas equals the ratio of their heights. Since $\tan 36 = \frac{h}{x}$, then $h = x \tan 36$ Since $\tan 72 = \frac{k}{x}$ then $k = x \tan 72$. Hence, $\frac{h}{k} = \frac{x \tan 36}{x \tan 72} = \frac{\tan 36}{\frac{2 \tan 36}{1 - \tan^2 36}} = \frac{1 - \tan^2 36}{2}$.

The answer is (1,1,2)

3. Let x be the side of the first square and y be the side of the second square. Since $\frac{a-x}{x} = \frac{a}{b}$ then $x = \frac{ab}{a+b}$. Applying the same approach to the square with side y inscribed in a triangle with legs x and b-x, then $y = \frac{x(b-x)}{x+(b-x)} = \frac{x(b-x)}{b} = \frac{ab}{a+b} \left(b - \frac{ab}{a+b} \right) \cdot \frac{1}{b} =$

$$\left(\frac{ab}{a+b}\right)\left(\frac{b}{a+b}\right)$$
. Hence $\frac{b}{a+b}$ is the common ratio of the

sides. The sum of the areas equals

$$\left(\frac{ab}{a+b}\right)^2 + \left(\frac{ab}{a+b}\right)^2 \left(\frac{b}{a+b}\right)^2 + \left(\frac{ab}{a+b}\right)^2 \left(\frac{b}{a+b}\right)^4 + K = \frac{\left(\frac{ab}{a+b}\right)^2}{1 - \frac{b^2}{(a+b)^2}} = \frac{ab^2}{a+2b}.$$
 Thus,

$$\frac{1}{5}\operatorname{area} \Delta ABC = \frac{1}{5} \left(\frac{1}{2} ab \right) = \frac{ab^2}{a+2b} \rightarrow \frac{b}{a+2b} = \frac{1}{10} \text{ gives } \frac{a}{b} = 8.$$

4. It is helpful to know that the areas of ΔPBC and ΔPAD are equal and that the areas of ΔPAB , ΔPBC , and ΔPCD form an increasing geometric progression. Let the area of $\Delta PAB = x$, then the other areas are as marked on the diagram. Thus,

$$\frac{2x^2}{x+2x^2+x^3} = \frac{1}{4} \text{ gives } x^2 - 6x + 1 = 0.$$
Since $\frac{DC}{AB} = \sqrt{\frac{x^3}{x}} = x$, we solve the equation and obtain $x = 3 + 2\sqrt{2}$

5.
$$\frac{\ln a^2}{1 - \ln a^2} = \frac{3\ln a}{1 - \ln a} \rightarrow \frac{2\ln a}{1 - 2\ln a} = \frac{3\ln a}{1 - \ln a} \rightarrow 2(\ln a) - 2(\ln a)^2 = 3\ln a - 6(\ln a)^2$$
$$\rightarrow 4(\ln a)^2 - \ln a = 0 \rightarrow \ln a = 0 \text{ or } \frac{1}{4}. \text{ Thus, } a = 1, e^{1/4}.$$

6. Subtract 1 from both sides obtaining: $(y-1)(y+1) = x(x+1)(x+2)(x+3) = (x(x+3))((x+1)(x+2)) = (x^2+3x)(x^2+3x+2)$. Since y-1 and y+1 are two integers differing by 2 and x^2+3x and x^2+3x+2 are two integers differing by 2, then for each value of x in $\{1, 2, ..., 100\}$ there is a value of y for which (y-1)(y+1) = x(x+1)(x+2)(x+3). For example, when x = 1, y = 5; when x = 100, y = 10,301. The answer is 100.